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ABSTRACT 

The Interaction of a crack with rigid circular cylindrical inclusions 

is considered for the case of longitudinal shear deformation. General 

representations of the solutions for a radial crack near a single and 

midway between two inclusions are given. The particular case of 

uniform shearing stress applied at infinity is discussed in detail. 

Expressions for the crack tip stress intensity factor K3 are 

derived and it is shown that K3 = 0 for a crack tip at the inclusion 

boundary, provided that the crack is radial. Generalization of the 

results to any number of inclusions with common line of centers is 

indicated. 
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1.' INTRODUCTION 

The theoretical literature dealing with fracture of composite 

materials is rather limited with rigorous analytical investigations 

being restricted to extremely idealized models. The most common 

idealization consists of replacing the heterogeneous composite by an 

"equivalent" homogeneous anisotropic medium. By performing analytical 

fracture studies on the equivalent homogeneous solid and comparing the 

theoretical results with experimental data, values of KQ (crack tip 

stress intensity factor) and G  (energy release rate) can be obtained, 

which characterize the macroscopic fracture behavior of the composite. 

This approach has met with considerable success. 

Considering that the composite is actually a heterogeneous solid 

consisting of homogeneous phases possessing individual values of the 

fracture parameters, it is natural to inquire whether the KQ   value 

of the composite can be predicted from those of the constituents. To 

provide an answer to this question, one has to perform a rigorous analysis 

that takes the heterogeneity of the composite into account. 

In general, the mathematical difficulties that are encountered are 

sufficiently great to force one to make severe approximations. A number 

of analyses, based on approximate,models, are available [1-6]. The most 

common approximation has been to study the interaction of a crack with 

a single circular inclusion. This problem has been solved exactly by 

Tamate [3] and Plato [4] and approximately by Sih et al. [1], Smith [5] 

and Atkinson [6]. When the transition is made to models resembling the 

microstructure of the composite more closely, only approximate analyses 

have been attempted [2]. 



In the present work, some exact analyses are presented for a limit- 

ing case of a fiber reinforced composite. The particular limit that is 

considered is the case in which the fiber shear modulus is much greater 

than that of the matrix. In this case it is reasonable to assume the 

fibers to be rigid. Furthermore, the composite is assumed to consist of 

aligned circular cylindrical fibers that are perfectly bonded to the 

matrix. The crack is assumed to lie in a plane parallel to the fibers 

and to extend to infinity in the fiber direction. The analysis for the 

general case is synthesized from a number of elementary cases of ever 

increasing complexity. 

The structure of the solution for a crack in a homogeneous solid 

under longitudinal shear loading is examined in Section 2 and a general 

representation satisfying the boundary conditions at the crack is con- 

structed. This general representation is used in Section 3 to construct 

a general representation of the solution for the problem of a (radial) 

crack near a rigid circular inclusion. The general representation of 

the solution for a crack lying on the line of centers between two rigid 

inclusions is found in Section 4. In Section 5, the results are gener- 

alized to a crack interacting with any number of inclusions, provided 

that the crack and inclusion centers lie on the same line. Since the 

general representation is also indicated in this case, it can be argued 

that the proper choice of the arbitrary function in the representation 

will permit one to solve the problem of a crack interacting with an 

arbitrary array of inclusions. 

Furthermore, upon calculating the value of the crack tip stress 

intensity factor for each of the examples considered, it is observed that 

the rigid inclusions tend to decrease its magnitude. This trend has been 
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observed in references [1-6]. It is further observed that the crack tip 

stress intensity factor is identically zero when the crack tip reaches 

the rigid inclusion. Since this is observed for all the cases examined, 

it can be concluded that the macroscopic fracture toughness of the 

composite may not be related to the fracture toughness values of the 

constituents. 

2. CRACK IN HOMOGENEOUS SOLID 

Consider an unbounded solid containing a crack which occupies the 

region |x|<c,-»<z<°°,y = 0. If the solid is loaded by 

shearing forces, which are functions of x and y only, parallel to the 

z-axis, the resulting deformation will be of longitudinal shear (or anti- 

plane) type. In this case, one has 

u = v = 0 , w = w(x,y) , (1) 

where u, v, w are displacements along the coordinate axes. The 

nonzero displacement and stress composnents are given, in terms of an 

analytic function F(z) of the complex variable z = x + iy ,* by 

y w(x,y) = Re {F(z)}  , (2) 

- dF ~ m 
' axz " '  ayz " Hz   • (3) 

where Re {.} is used to denote the real part of the function in the 

brackets and y is the shear modulus. In terms of polar coordinates, 

* Henceforth, z will be used to denote the complex variable x = iy 
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(3) becomes 

°rz ' 1 aez " e  Hz    ' (4) 

The boundary condition, to be satisfied on the crack surface, is 

a       =   0  on  y = 0 , |x| < c . (5) 

Given an arbitrary imposed stress field, defined by F^z) in the 

homogeneous solid, it is required to determine the solution when the 

crack is present. In approaching the problem, it is convenient to 

decompose Foo(z) into two parts, namely, 

Fjz) = 9l(z) + g2(z)  , (6) 

where 

2g,(z) = Fjz) -Fjz)  , (7a) 

2g2(z) = Fjz) + Fjz) .  N ,     (7b) 

Herein, the bar over only the function symbol denotes the complex con- 

jugate of Foo(z) with z being treated as though it were a real 

variable. For example, Fro(z) = - i + z when FOT(Z) = i + z . It is 

readily verified that 

dg-, 
^- = imaginary , 

dg2 
dz" = real 

on y = 0 . (8) 

Thus, g2(z) gives o     = 0 on y = 0 and, hence, the boundary con- 

dition at the crack is automatically satisfied. This implies that if 

F (z) = F (z) , the crack does not disturb the imposed stress field. 



Let us now seek a solution of the problem in the case Foo(z) = - Foo(z). 

For convenience such an imposed str-ss field will be referred to as being 

of type I. For an imposed field of type I, the boundary conditions at 

the crack will be satisfied if a function F(z) is found such that 

df_ 
dz 

real for |x| <. c 

on y = 0 .        (9) 
imaginary for |x| >_ c 

Such a function is given by 

F(z) = f(z) Vz2 - c2   , (10) 

where f(z) is an arbitrary function of type I. That (10) actually sat- 

isfies the boundary conditions at the crack is readily verified by sub- 

stituting the shearing stresses corresponding to (10) into boundary 

condition (5). Since f(z) is arbitrary, (10) can be considered to be 

a general representation of the solution of the crack problem for Foo(z) 

of type I. It only remains to relate  f(z) in (10) to the imposed 

stress field. This can be readily done by insisting that solution (10) 

have the same behavior as Fjz) at infinity and at any other singularities 

of Foo(z). In particular, if Fro(z) = i Pn z
n , the solution is given by 

F(z) - i P z^VI^jl + E   ^^ (ifl   (ID n I   m=l (m-l)!m!22m ' W > 

where 

!n/2  for n even , 
(12) 

(n-l)/2 for n odd . 

The structure of solution (11) is extremely simple. The finite series 
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in the brackets consists of the leading terms of the expansion of 

[1 - (c/z)2]"1/2 about the point at infinity, the series being terminated 

so that F(z) does not become singular at the origin. 

Finally, let us consider a special case of (11) which will prove 

useful in subsequent discussions. Letting F (z) = - i P z (which 
00 

corresponds to a     = 0 , a  = P), we get 

(13) 

The crack tip stress intensity factor K| corresponding to (13) is 

K* = P ft (14) 

This quantity will be needed in subsequent discussions. For a definition 

of the crack tip stress intensity factor, the reader is referred to [7]. 

3. RADIAL CRACK NEAR A RIGID INCLUSION 

Let us now consider the interaction of a crack with a rigid inclusion 

of unit radius. Let the crack and inclusion be placed as shown in Figure 1. 

Referring to this figure, the boundary conditions to be satisfied at the 

crack and inclusion are 

a  = 0  on  y = 0 , |x - a| < c , (15) 

w = 0  on   |zl = 1 . (16) 

As in Section 2, given an arbitrary imposed stress field, defined by 

F (z) in a homogeneous solid, it is required to determine the solution 

when the rigid inclusion and crack are present. 
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Before attacking this problem, let us recall a result given in 

[8,9] which can be stated as follows: given a stress field, defined by 

f(z) which has no singularities inside the circle |z| =1, in a 

homogeneous solid, the solution when a rigid inclusion of unit radius 

is present at the origin is given by 

F(z) = f(z) - T(z)    . (17) 

The information contained in (10) and (17) can be used to generate 

the solution of the problem formulated above. First of all, if 

FOT(Z) = F'Jz), direct use of (17) gives 

F(z) = Fjz) - VJz) . (18) 

which satisfies the condition F(z) = F(z) . Hence F(z) , defined by 

(18), is the desired solution. 

If F (z) is of type I, the situation is somewhat more 
00 

complicated. The solution must simultaneously have the features of (10) 

and (17). Upon noting that the right hand side of (17) can be multiplied 

by a function that is real on |z| = 1 without violating (16) and that 

the product >/(z - a)2 ~ °2 V(]/z " a)2 " °2  is rea1 on lzl = ]» 1t 

follows that the desired solution can be written in the form 

F(z) = [h(z) - F(l/z)]V(z - a)2 - c2 Vo/z - a)2 - c2' (a2 - c2)-1/2 , 

(19) 

where h(z) is a function of type I. That (19) is actually the desired 

representation can be verified by substituting (19) into the boundary 

conditions. Application of the boundary conditions at infinity (and at 

singularities of the applied stress field) will specify h(z) . In 

particular, taking h(z) = - i P/2 yields 



F(z) = - i P V(z - a)2 - c2 >/(l/z - a)2 - c2 (a2 - c2)"1/2 , (20) 

which is the solution for a°   - 0 , o°   = P . In this case, the stress 
At jr £• 

intensuty factor for the crack tip nearest to the rigid inclusion is 

K3 = P*^^l/(a - c) - a]z - cd   (a2 - c2)"1/2        (21) 

* 
The ratio K,/K3 is convenient for assessing the effect of the 

inclusion on the fracture behavior of the matrix. Dividing (21) by (14) 

gives 
* 

\3/,(3 K,/lC = Vn/U - c) - a]2 - c2' (a2 - c2)_1/2    .   (22) 

If the crack tip is at the inclusion interface, c = a - 1 and 

K3/K* = 0 ; (23) 

that is, the stress intensity factor is zero for the crack tip at the 
* 

rigid inclusion. Furthermore, K, <_ K- for all other admissible 

combinations of a and c. 

It is readily verified that the stress intensity-factor for the 

crack tip nearest the inclusion is given by 

K3/K* - [h(a-c) - F(l/(a-c))]V[l/(a-c) - a]2 - cZ" (a2-c2)"1/2 

(24) 

in the general case. Since the terms in the brackets are finite unless 

h(z) is singular at z = a - c , we have the result that the stress 

intensity factor is zero for a crack terminating at a rigid inclusion no 

matter what the loading is. 
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4. CRACK BETWEEN TWO RIGID INCLUSIONS 

Next, let us consider the interaction of a crack with two rigid 

inclusions of unit radius. Placing the crack and inclusions as shown 

in Figure 2, the boundary conditions to be satisfied at the crack and 

inclusions are 

a  = 0  on  y = 0 , |x| < c   , (25) 

w = rigid body displacement on |z ± a| = 1 (26) 

As in the previous sections, given an arbitrary imposed stress field, 

defined by Foo(z) in a homogeneous solid, it is required to determine 

the solution when the two rigid inclusions and crack are present. 

In solving this problem, the structure of the solution, presented 

in Section 3, will be used as a guide. Depending on the nature of 

F^z), there are two cases to be considered. If F^z) = FJz), the 

crack does not influence the stress field and the problem reduces to the 

case of two rigid inclusions disturbing an applied stress field. This 

solution is readily found by the Schwarz alternating method [10,11]. 

It is given by 

F(z) = Fjz) - £ {rja - ?2n(z)] - Fja - ?2n(0)] 
n=0 

+ FJn2n(z) - a] - FJn2n(0) -a]} + 

+ ElFja-ng^Un-Fja-ng^CO)] 
n=u v 

+ FJW2> - a3 - FJW°> -a]} •      (27) 
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where 

(28) 

C0(z) = (a -z)"1   ,  n0(z) - (a + z)"1  ., 

In the derivation of solution (27), the displacement of the point at the 

origin was specified to be the same as in the homogeneous solid. That 

solution (27) converges follows directly from the convergence proof for 

the Schwarz alternating method. 

If Fjz) is of type I (i.e., Fjz) = - FJz)), the crack 

influences the stress field. As was done in Section 3, a solution will 

be sought in the form 

F(z) - N/?T7  H(z) G(z)  , (29) 

where H(z) is a type I solution in the absence of the crack and G(z) 

is a function such that G(z) (z2 - c2)1/2 is real on |z ± a| = 1 . 

It is readily verified that any solution of the form (27) can be used 

as H(z) and that 

-*-T y/Un(z) - a]2 - cV[nn(z) - a]z - c*       ^ 

n=0 /[cnH - a]2 - cVl^H - a]2 - cz 
G(z) = 

Convergence of the infinite product can be established rather easily and, 

hence, it is not given here. 

Even though solution (29) looks formidable, its structure is 

extremely simple. The functions ?n(z) and nn(z) are terminating 

continued fractions, resulting from successive inversions of z with 

respect to the rigid inclusions. The infinite product G(z) consists 
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of crack type singularities, corresponding to cracks of diminishing 

length generated by inversion with respect to the inclusion boundaries. 

H(z) is a general representation of the solution for the case of two 

rigid inclusions disturbing an applied stress field. 

That (27) satisfies the boundary conditions can be easily 

verified. Upon noting that H(z) = - H(z) and G(z) = G(z) , we have 

that H(z)G(z) is a function of type I. Hence, upon using the results 

of Section 2, it follows that (29) satisfies boundary condition (25). 

To show that (29) satisfies (26), we note that H(z) is imaginary on 

|z ± a| =1, while G(z)/z2 - c2 is real there. Thus, F(z) given by 

(29) is imaginary on |z ± a| = 1 and, hence, boundary conditions (26) 

are satisfied. 

Since H(z) in (29) is an arbitrary solution of the problem when 

the crack is absent, solution (29) can be considered to be a general 

representation of the solution for the problem being considered in this 

Section. Unfortunately, representation (29) is sufficiently complicated 

that only the simplest examples can be worked out in detail without 

overly tedious computations. For example, taking H(z) = - i P , we 

get   

F(z) = - i P A2  - c2' G(z) , (31) 

which is the solution corresponding to F^z) = - i P z . The crack tip 

stress .intensity ration K3/K* , corresponding to (31), is 

K3/K* = G(c)  . (32) 

Figure 3 shown the variation of crack tip stress intensity ratio 

as a function of a dimensionless < 
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inclusion boundaries and dividing the result by its value at infinity. 

In particular, taking h(z) = - i P yields the solution 

corresponding to FTO(Z) = - i P z . The crack tip stress intensity factor 

in this case is given by 

K3 = g(c) K*      , (35) 

where K* is given by (14) and g(z) is g(z) evaluated at the crack 

tip. If the crack tip touches the rigid inclusion, g(c) = 0 and, 

hence K3 = 0. A similar result follows in the general case given by (34). 

If F (z) = F (z) , the crack does not influence the stress field. 
CO*  '       00»  '  J 

The generalization of the present results to the case of inclusions 

on and off the x-axis is not obvious. It can be argued that the 

solution of this problem can be represented in the form (34) where 

(i) g(z) is the infinite product of all successive inversions of 

the crack singularity with respect to the inclusions with centers on the 

x-axis divided by its value at z = °° ; and 

(ii) h(z) is a function of type I that is imaginary on the 

boundaries of the inclusions with centers on the x-axis and such that 

F(z) satisfies the boundary conditions on all other inclusions. 

This is the expected representation of the solution for the case 

in which the crack influences the*stress field. If the crack does not 

influence the stress field, the solution can be obtained rather easily 

by the Schwarz alternating method. 

It should be noted that for an applied field of type I, the crack 

tip stress intensity factor will be given by 

K3 = 1 /c  h(c) g(c)   , (36) 
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where h(c) and g(c) are the functions described above evaluated at 

the crack tip. If the crack tip touches the rigid inclusion boundary, 

g(c) = 0 and K3 will be zero. 

6. CONCLUSION 

It can be concluded from the results, presented above, that the 

crack tip stress intensity factor K3 is identically zero for a mode 

three crack terminating radially at a rigid fiber independently of the 

fiber distribution. Since it is highly unlikely that a microcrack will 

always either miss the inclusions or run into a fiber in such a manner 

that the crack is normal to the interface, any interpretation of 

fracture phenomena in terms of the present results can be expected to be 

questionable. Analyses of non-radial cracks that will run into the 

interface at an oblique angle must be obtained before attempting to 

explain the fracture behavior of composites. 

It is hoped that problems of non-radial cracks near inclusions 

can be solved in the near future. At that time a rational discussion of 

the micromechanics aspects of fracture of a single ply of a fiber 

reinforced composite will be possible. 
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1 Crack near a rigid inclusion. 

2 Crack midway between two rigid inclusions. 

3 Crack tip stress intensity ration vs. dimension- 

less crack length for discrete values of 

distance between two rigid inclusions of unit 

radius. 
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